Databricks Design Patterns
This section provides guidance on common implementation patterns for partner integrations with Databricks. These patterns cover the full data lifecycle—from authentication and access control through ingestion, transformation, serving, and AI capabilities.
Pattern overview
| Pattern | Description |
|---|---|
| Access and Authentication | Networking architecture, OAuth flows, token federation, and authentication best practices |
| Metadata and Access Control | Unity Catalog integration, reading/writing metadata, and managing access policies |
| Data Ingestion | File-based ingestion, streaming, CDC, and data loading patterns |
| Data Transformation | Incremental and batch transformations, medallion architecture, and orchestration |
| Serving and Consumption | SQL warehouses, model serving, Delta Sharing, and streaming output |
| Lakebase (OLTP) | PostgreSQL-compatible transactional workloads with Lakebase |
| AI Capabilities | AI agents, Genie, AI Functions, Vector Search, and foundation models |
Data lifecycle
Partners typically implement patterns across these phases:
┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Ingest │ ──▶ │ Transform │ ──▶ │ Serve │ ──▶ │ Consume │
│ │ │ │ │ │ │ │
│ • Files │ │ • Medallion │ │ • SQL WHs │ │ • BI Tools │
│ • Streaming │ │ • SDP │ │ • APIs │ │ • Apps │
│ • CDC │ │ • Jobs │ │ • Sharing │ │ • AI/ML │
└─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘
Foundational requirements
All patterns build on these foundational requirements:
- Unity Catalog - All data assets must be governed through Unity Catalog
- OAuth Authentication - Use OAuth 2.0 flows for secure authentication
- User-Agent Telemetry - Implement telemetry for usage attribution
See Integration Requirements for complete guidance.
Getting started
Choose your starting point based on your integration type:
| Integration Type | Start Here |
|---|---|
| BI / Analytics tools | Serving and Consumption → Metadata |
| Data ingestion / ETL | Data Ingestion → Transformation |
| AI / Agent platforms | AI Capabilities → Access and Authentication |
| Governance / Catalog | Metadata and Access Control → Access and Authentication |
| OLTP / Transactional | Lakebase (OLTP) |
What's next
- Start with authentication: Understand access and authentication patterns
- Review requirements: See the integration requirements for foundational guidance
- Configure telemetry: Set up User-Agent telemetry for attribution
- Explore reference architectures: Browse the Databricks Architecture Center for detailed diagrams and patterns