databricks.labs.dqx.llm.llm_core
LLMModelConfigurator Objects
class LLMModelConfigurator()
Configures DSPy language models.
__init__
def __init__(model_config: LLMModelConfig)
Initialize model configurator.
Arguments:
model_config- Configuration for the LLM model.
configure
def configure() -> None
Configure the DSPy language model with the provided settings.
DspySchemaGuesserSignature Objects
class DspySchemaGuesserSignature(dspy.Signature)
Guess a table schema based on business description.
DspySchemaGuesser Objects
class DspySchemaGuesser(dspy.Module)
Guess table schema from business description.
forward
def forward(
business_description: str) -> dspy.primitives.prediction.Prediction
Guess schema based on business description.
Arguments:
business_description- Natural language description of the dataset.
Returns:
Prediction containing guessed schema and assumptions.
DspyRuleSignature Objects
class DspyRuleSignature(dspy.Signature)
Generate data quality rules with improved output format.
DspyRuleGeneration Objects
class DspyRuleGeneration(dspy.Module)
Generate data quality rules.
Now focused solely on rule generation, with schema inference delegated.
forward
def forward(schema_info: str, business_description: str,
available_functions: str) -> dspy.primitives.prediction.Prediction
Generate data quality rules.
Arguments:
schema_info- JSON string containing table schema.business_description- Natural language description of requirements.available_functions- JSON string of available check functions.
Returns:
Prediction containing quality_rules and reasoning.
DspyRuleGenerationWithSchemaInference Objects
class DspyRuleGenerationWithSchemaInference(dspy.Module)
Combines schema inference and rule generation.
Follows Dependency Inversion Principle by depending on abstractions (protocols).
forward
def forward(schema_info: str, business_description: str,
available_functions: str) -> dspy.primitives.prediction.Prediction
Generate rules with optional schema inference.
Arguments:
schema_info- JSON string of schema (can be empty to trigger inference).business_description- Natural language requirements.available_functions- JSON string of available functions.
Returns:
Prediction with quality_rules, reasoning, and optional schema info.
LLMRuleCompiler Objects
class LLMRuleCompiler()
__init__
def __init__(model_config: LLMModelConfig,
custom_check_functions: dict[str, Callable] | None = None,
rule_validator: RuleValidator | None = None,
optimizer: BootstrapFewShotOptimizer | None = None)
Arguments:
model_config- Configuration for the LLM model.custom_check_functions- Optional custom check functions.rule_validator- Optional rule validator instance.optimizer- Optional optimizer instance.
model
@cached_property
def model() -> dspy.Module
Get the optimized DSPy model.
Returns:
Optimized DSPy module for generating data quality rules.