DLT-META CLI

pre-requisites:

  • Databricks CLI

  • Once you install Databricks CLI, authenticate your current machine to a Databricks Workspace:

    databricks auth login --host WORKSPACE_HOST
    
  • Python 3.8.0 +

Steps:
  1. git clone https://github.com/databrickslabs/dlt-meta.git
  2. cd dlt-meta
  3. python -m venv .venv
  4. source .venv/bin/activate
  5. pip install databricks-sdk

onboardingDLTMeta.gif

OnboardJob

Run Onboarding using dlt-meta cli command:

   databricks labs dlt-meta onboard
  • Above command will prompt you to provide onboarding details.
  • If you have cloned dlt-meta git repo then accepting defaults will launch config from demo/conf folder.
  • You can create onboarding files e.g onboarding.json, data quality and silver transformations and put it in conf folder as show in demo/conf

onboardingDLTMeta_2.gif

onboardingDLTMeta.gif

  • Once onboarding jobs is finished deploy bronze and silver DLT using below command

Dataflow DLT Pipeline:

Deploy Bronze DLT

       databricks labs dlt-meta deploy
  • Above command will prompt you to provide dlt details. Please provide respective details for schema which you provided in above steps

deployingDLTMeta_bronze.gif

Deploy Silver DLT

       databricks labs dlt-meta deploy
    • Above command will prompt you to provide dlt details. Please provide respective details for schema which you provided in above steps

deployingDLTMeta_silver.gif

  • Goto your databricks workspace and located onboarding job under: Workflow->Jobs runs