DLT-META Lakehouse App

Prerequisites

System Requirements

  • Python 3.8.0 or higher
  • Databricks CLI (latest version, e.g., 0.244.0)
  • Configured workspace access

Initial Setup

  1. Authenticate with Databricks:

    databricks auth login --host WORKSPACE_HOST
  2. Setup Python Environment:

    git clone https://github.com/databrickslabs/dlt-meta.git
    cd dlt-meta
    python -m venv .venv
    source .venv/bin/activate
    pip install databricks-sdk

Deployment Options

Deploy to Databricks

  1. Create Custom App:

    databricks apps create demo-dltmeta

    Note: Wait for command completion (a few minutes)

  2. Setup App Code:

    cd dlt-meta/lakehouse_app
    
    # Replace testapp with your preferred folder name
    databricks sync . /Workspace/Users/<user1.user2>@databricks.com/testapp
    
    # Deploy the app
    databricks apps deploy demo-dltmeta --source-code-path /Workspace/Users/<user1.user2>@databricks.com/testapp
  3. Access the App:

    • Open URL from step 1 log, or
    • Navigate: Databricks Web UI → New → App → Back to App → Search your app name

Run Locally

  1. Setup Environment:

    cd dlt-meta/lakehouse_app
    pip install -r requirements.txt
  2. Configure Databricks:

    databricks configure --host <your databricks host url> --token <your token>
  3. Start App:

    python App.py

    Access at: http://127.0.0.1:5000

Using DLT-META App

App User Setup

App User Example App User Example

The app creates a dedicated user account that:

  • Handles onboarding, deployment, and demo execution
  • Requires specific permissions for UC catalogs and schemas
  • Example username format: “app-40zbx9_demo-dltmeta”

Getting Started

  1. Initial Setup:

    • Launch app in browser
    • Click “Setup dlt-meta project environment”
    • This initializes the environment for onboarding and deployment
  2. Pipeline Management:

    • Use “UI” tab to onboard and deploy pipelines
    • Configure pipelines according to your requirements

    Onboarding Pipeline: Onboarding UI Onboarding UI Pipeline onboarding interface for configuring new data pipelines

    Deploying Pipeline: Deploy UI Deploy UI Pipeline deployment interface for managing and deploying pipelines

  3. Demo Access:

    • Available demos can be found under “Demo” tab
    • Run pre-configured demo pipelines to explore features

    App Demo App Demo Demo interface showing available example pipelines

  4. Command Line Interface:

    • Access CLI features under the “CLI” tab
    • Execute commands directly from the web interface

    CLI UI CLI UI CLI interface for command-line operations